Skip to main content

INTEG.1D.CUBIC.SPLINE Function

INTEG.1D.CUBIC.SPLINE

Definite integral using Cubic Spline Interpolation.

Syntax

=INTEG.1D.CUBIC.SPLINE(dataX, dataY, lowerLimit, upperLimit, extrapolate)

Parameters

NameTypeRequiredDescription
dataXDouble[]YesKnown x values.
dataYDouble[]YesKnown y values.
lowerLimitDoubleYesLower limit of integration.
upperLimitDoubleYesUpper limit of integration.
extrapolateBooleanNoAllow extrapolation (true/false).

Returns

Calculated result based on input parameters

Examples

Error Conditions

ErrorCauseSolution

About Numerical Integration

Numerical integration computes the area under a curve defined by discrete data points. This function uses SPLINE interpolation to approximate the integral.

Understanding Integration

Integration finds:

  • Total Accumulation: Sum of all changes
  • Area Under Curve: Geometric interpretation
  • Cumulative Sum: Total effect over interval

Practical Applications

  • Physics: Calculate work from force, distance from velocity
  • Statistics: Compute probabilities from distributions
  • Engineering: Determine total energy consumption
  • Economics: Calculate total revenue or cost

See Also